[

&V
oM~

Open Networking Foundation

ISSU in ONQOS

Architecture and Implementation

Uyen Chau
Member of Technical Staff @ ONF




Overview

Distributed systems in ONOS
SSU Protocol




Distributed Systems in ONOS



Distributed Systems in ONOS

Controller
Northbound APIs
Distributed Primitives
Primitive Protocols
Serialization



Controller

ONOS controllers typically consist of an odd number of nodes
Use peer-to-peer protocols for state replication and
coordination

Elect a master for each device controlled by the controller
Can tolerate loss of up to a minority of nodes

New masters elected after node failure

O M-



Nodes —»

Controller



Nodes —»

Pevices —»

Controller




Controller

Nodes —»

Pevices —»



Northbound APIs



Applications

Northbound APIs are accessed via
Applications
REST APIs
CLI
Applications distributed in each controller node
Can access all northbound APIs
Can use primitives for state replication and coordination



Services

ONOS applications interact with high level services
Expose information about the network, cluster, configuration,
etc

DeviceService

FlowRuleService

IntentService

ClusterService

NetworkConfigService

etc
Generally stateless

OMF



Stores

Stateful backing to services
DeviceStore
FlowRuleStore
IntentStore
ClusterStore
NetworkConfigStore

Usually distributed in multi-node controllers



Stores

Use a variety of distributed systems protocols
Gossip
Anti-entropy
Consensus
Primary-backup
Distributed primitives



Distributed Primitives

Encapsulate complex distributed systems protocols
Used by both stores and applications
State replication
EventuallyConsistentMap
ConsistentMap
DistributedSet
DocumentTree
AtomicCounter
Coordination
LeaderElector
DistributedLock
WorkQueue



apps

Distributed Primitives

= storageService.<ApplicationId, Application>consistentMapBuilder()

.withName("onos-apps")
.withRelaxedReadConsistency()
.withSerializer(Serializer.using(KryoNamespace.newBuilder()

.register(KryoNamespaces.API)

.register(ApplicationId.class)

.register(Application.class)

.register(Version.class)

.register(ApplicationRole.class)
build()))

build();



Distributed Primitives

public void storeApplication(Application app) {
apps.put(app.id(), app);

public Application getApplication(ApplicationId appId) {
return Versioned.valueOrNull(apps.get(appId));

16 o M=



Primitive Protocols

Gossip
Periodically send updates to peers
Use logical/wall clock timestamps for ordering
Primary-backup/multi-primary
Replicate from primaries to backups
Consensus
Embedded Raft clusters for consensus
Primitives modelled as replicated state machines
Requires a quorum to make progress



Primitive Protocols

Built on Atomix distributed systems framework

Multiple distributed systems protocols
Raft consensus
Primary-backup
Partitioning
Cluster management
Supports custom replicated state machines



Serialization

Kryo for fast binary serialization
FieldSerializer

Default serializer

Uses reflection to map fields to bytes
Serializer

Custom serializer
KryoNamespace

Wrapper around Kryo serialization

Register serializable types

Assigns sequential type IDs

Uses FieldSerializer by default

Supports custom Serializers

O M-



Serialization

private final Serializer SERIALIZER = Serializer.using(KryoNamespace.newBuilder()
.register(new HeartbeatMessageSerializer(), HeartbeatMessage.class)
.register(ControllerNode.class)
.register(ControllerNode.State.class)
.register(NodeId.class)
.build());

2 oM



Serialization

private static class HeartbeatMessageSerializer extends com.esotericsoftware.kryo.Serializer<HeartbeatMessage> {
@Override
public void write(Kryo kryo, Output output, HeartbeatMessage message) {
kryo.writeObject(output, message.source());
kryo.writeObject(output, message.state());

@Override

public HeartbeatMessage read(Kryo kryo, Input input, Class<HeartbeatMessage> type) {
ControllerNode source = kryo.readObject(input, ControllerNode.class);
ControllerNode.State state = kryo.readObject(input, ControllerNode.State.class);
return new HeartbeatMessage(source, state);

2 oM



In-Service Software Upgrades



In-Service Software Upgrades

Requirements

The Upgrade Workflow
Fault Tolerance
Compatibility Issues
Upgrading State

Future Work



ISSU Requirements

Support ISSU for ONOS core and applications

Only a single controller node down at a time
Maintain fault tolerance through upgrade process
Modify replicated state during upgrades
Introduce new primitives and primitive operations
Recover from catastrophic failures



ISSU Requirements

Encapsulate complexity in distributed primitives
Require code changes only if state and/or protocols changed
Use existing bootstrap APls to modify state



The Upgrade Workflow



The Upgrade Workflow

ISSU performed as a partitioned rolling upgrade
Upgrade a subset of the cluster
Hand control of the network over to the new version

A simple mastership change from one version to the next
Upgrade the remaining nodes
Must support multiple compatible versions running in the
same cluster at the same time



The Upgrade Workflow

Pevices —»
28 oMN~—



The Upgrade Workflow

Nodes —» @
Pevices —»

o



Nodes —»

Pevices —»

The Upgrade Workflow

010




The Upgrade Workflow

T @ @
Pevices —»
st oMN~—



The Upgrade Workflow

1ssu 1nit

Begin an upgrade
1ssu upgrade

Transfer control from one version to the next
i1ssu commit

Complete an upgrade



init

¥

upgrade minority

&

Y

upgrade
remaining

\

=)

A

(V.l...)




Demo



Fault Tolerance

35



Fault Tolerance

An upgrade itself can fail
New version fails to operate network correctly
Applications fail to activate
Node/network problems prevent control from being handed
over

Upgrade testing
Upgrades should be tested thoroughly in prior to production



Fault Tolerance

Production upgrade failure recovery
Rollback upgrade to restore to pre-upgrade state
Switch mastership from new version back to old
Revert stores to previous revisions

Automatic rollbacks
Failures can cause undue strain on either version
Detect failures on upgraded nodes and rollback



Nodes —»

Pevices —»

Fault Tolerance




Nodes —»

Pevices —»

Fault Tolerance

39




Fault Tolerance

Nodes —»
Pevices —»

o M=



The Upgrade Workflow

1ssu 1nit
Begin an upgrade
1ssu upgrade
Transfer control from one version to the next
1ssu commit
Complete an upgrade
issu rollback
Transfer control back to the old version and revert the state of
the cluster
1ssu reset
Reset the upgrade protocol after rollback



init

]
~—

upgrade minority

uparade

~

passed?

upgrade
remaining

commit

7|

version n+1

rollback

downgrade
Winority

\ e /

42



Demo



Compatibility Issues



Compatibility Issues

New versions may break compatibility of serialized objects
Fields added/removed/changed
Enabling ISSU in ONOS enables backwards/forwards

compatible serialization by default
onos.cluster.issu.enabled system property
Implemented with Kryo’s CompatibleFieldSerializer
Significant overhead to compatible serialization (20-50%)
Can be disabled for specific serializers for better performance

O M-



Compatibility Issues

private final Serializer SERIALIZER = Serializer.using(KryoNamespace.newBuilder()
.setCompatible(true)

.register(HeartbeatMessage.class)
.register(ControllerNode.class)
.register(ControllerNode.State.class)
.register(Nodeld.class)

.build());

4 o M=



Compatibility Issues

Custom serializers are not inherently capable of handling
schema evolution
Custom serializers must either be static or designed to handle

changes
Create new classes to introduce changes
Encode a 1-byte format version number



Compatibility Issues

private static class HeartbeatMessageSerializer extends com.esotericsoftware.kryo.Serializer<HeartbeatMessage> {
private final byte VERSION = 1;

@Override

public void write(Kryo kryo, Output output, HeartbeatMessage message) {
output.writeByte(VERSION);
kryo.writeObject(output, message.source());
kryo.writeObject(output, message.state());

@Override

public HeartbeatMessage read(Kryo kryo, Input input, Class<HeartbeatMessage> type) {
byte version = input.readByte();
ControllerNode source = kryo.readObject(input, ControllerNode.class);
ControllerNode.State state = kryo.readObject(input, ControllerNode.State.class);
return new HeartbeatMessage(source, state);

48



Compatibility Issues

private static class HeartbeatMessageSerializer extends com.esotericsoftware.kryo.Serializer<HeartbeatMessage> {
private final byte VERSION = 2;

@Override

public void write(Kryo kryo, Output output, HeartbeatMessage message) {
output.writeByte(VERSION);
kryo.writeObject(output, message.source());
kryo.writeObject(output, message.state());
output.writeLong(message.timestamp());

@Override
public HeartbeatMessage read(Kryo kryo, Input input, Class<HeartbeatMessage> type) {
byte version = input.readByte();
ControllerNode source = kryo.readObject(input, ControllerNode.class);
ControllerNode.State state = kryo.readObject(input, ControllerNode.State.class);
switch (version) {
case 1:
return new HeartbeatMessage(source, state, System.currentTimeMillis());
case 2:
long timestamp = input.readLong();
return new HeartbeatMessage(source, state, timestamp);
default:
throw new AssertionError();

49



Compatibility Issues

KryoNamespace objects must be modified carefully
Changes to ordering of registrations can change type ID
mappings
Serialized objects will no longer reference the correct type during
deserialization

Use static registration IDs to avoid breaking changes during
refactoring



Compatibility Issues

private final Serializer SERIALIZER = Serializer.using(KryoNamespace.newBuilder()
.setCompatible(true)

.register(HeartbeatMessage.class)
.register(ControllerNode.class)
.register(ControllerNode.State.class)
.register(Nodeld.class)

.build());

o oM



Upgrading State



Upgrading State

Two types of state
Shared state
Isolated state
Network state is shared across versions
DeviceStore
LinkStore
HostStore
Controller state is versioned
Changes made in newer versions not visible in older versions
Not propagated to network until after mastership change



Upgrading State

Upgraded nodes must be able to modify primitive state
But modified state may not be compatible with older versions

Two approaches to state modification
Modify on write
Modify on read



Modify on Write

Primitive revisions
The primary mechanism for isolating primitive changes
Fork primitive state machines
Preserves consistency guarantees
Three revision isolation levels
Full isolation
Simple versioning
Forward propagation



Primitives —»

Nodes —»

Modify on Write

0n0s-apps

Pevices —»




Primitives —»

Nodes —»

Modify on Write

0nos-apps

Pevices —»

57




Primitives —»

Nodes —»

Modify on Write

—

0nos-apps

Pevices —»

58




Modify on Write

Transformer

Y

Primitives = |

0nos-apps

Nodes —»

Pevices —»




Modify on Read

Apply transformers to state on read
Werite to primitives with a node version number
When reading state from another node, apply transformations
Used in the ONOS ApplicationStore



Modify on Read

apps = storageService.<ApplicationId, Application>consistentMapBuilder()
.withName("onos-apps")
.withRelaxedReadConsistency()
.withSerializer(Serializer.using(KryoNamespace.newBuilder()
.register(KryoNamespaces.API)
.register(ApplicationId.class)
.register(Application.class)
.register(Version.class)
.register(ApplicationRole.class)
.build()))
.withCompatibilityFunction((app, version) —> {
// Load the application description from disk. If the version doesn't match the persisted
// version, update the stored application with the new version.
ApplicationDescription appDesc = getApplicationDescription(app.id().name());
if (!appDesc.version().equals(appHolder.app().version())) {
return DefaultApplication.builder(app)
.withVersion(appDesc.version())

.build();
}
return app;
1)
.build();

61



Future Work



Future Work

How do we upgrade applications independently of the core?
How do we prevent breaking changes to serializer
configurations?

How do we monitor refactoring for breaking changes?

What happens if a single application breaks the upgrade path?
How do we introduce new features to distributed primitives
themselves?

How can we simplify isolating applications?

O M-



Application Upgrades

Currently possible, but not elegant
Assign uniqgue VERSION for each application upgrade
Add hash of installed applications to VERSION?

Upgrade a subset of components (app dependencies)?



Introducing New Features

New Raft primitives cannot be introduced because of quorum
requirements
New Raft operations cannot be introduced for the same reason
Initial solution

Fork Raft partitions on upgrade

Difficult to synchronize across Raft partitions

Increases overhead during ISSU by doubling number of partitions
Future solution

Separate Atomix/Raft from ONOS controller

Upgrade Atomix independently of ONOS

Introduce new primitives/operations prior to controller upgrade

O M-



Introducing New Features

Atomix —» ‘ ‘ ‘

Pevices —»

66



Nodes —»

Pevices —»

Introducing New Features

67



Introducing New Features

-~ O

Pevices —»




Nodes —»

Pevices —»

Introducing New Features

69



Pevices —»

Introducing New Features

70



Contributing

ONOS ISSU Brigade Wiki:
https://wiki.onosproject.org/display/ONOS/ISSU

Google Group:
https://sroups.google.com/a/onosproject.org/forum/#!forum/

brigade-issu

Meetings weekly on Tuesdays


https://wiki.onosproject.org/display/ONOS/ISSU
https://groups.google.com/a/onosproject.org/forum/#!forum/brigade-issu
https://groups.google.com/a/onosproject.org/forum/#!forum/brigade-issu

